
-nD-Rl31 495 FLEXIBLE PRRSING(U) CARNEGIE
INST OF TECH PITTSBURGH PR 1/1

F DEPT OF COMPUTER SCIENCE P J HAYES 22 OCr 82
UCAFOSR-TR-83-0667 F49620-79-C-0143G

UNCLASSIFIED FG 9/ SI~lEEElllhllE
llHun.

11A1 1.0 , Lai
111 1

111L25 EA 1

MICROCOPY RESOLUTION TEST CHART!
NATM&IWAfU OF STANAOM-1113-A

V.. ..,

UiZ

AFOSRTR. 8 370 6 67

Slexible-Parsing:T echnical Report

Philip J. Hayes

Computer Science Department, Carnegie-Mellon University
Pittsburgh, PA 1521;

" Abstract

When people use language spontaneously, they often do not adhere strictly to commonly accepted
standards Of grammaticality. The primary objective of this project Is to develop flexible computer

q parsing techniques which can deal with the various kinds of ungrammaticalities that arise, both on the
lexical and the phrase level.

The progress towards this goal covered by this report includes:

9 The completion of the development and the evaluation of CASPAR and DYPAR, two
experimental parsers based on the construction-specific approach to parsing, this
approach having been formulated through experience with FlexP, a flexible parser
developed earlier under this contracL

* Further development of the construction-specific approach to parsing through the design
and construction of MULTIPAR. Like CASPAR and DYPAR, "MULTIPAR Is based on
construction-specific parsing techniques, but aims for much greater linguistic coverage,
serving as a vehicle tW test whether the construction-specific approach scales up In a
more realistic parser. In particular, this work Involved development of additional
bonstruct.on-speciflc parsing strategies and of a control structure through which a large
number of such strategies could be coordinated on the parsing of a single input.

9 Additional application of the construction-specific approach to flexible parsing to the
parsing of an artificial command language in the parser for the Cousin command
Interface, a graceful Interface for the Unix operating system being developed largely
under other funding. This effort represents a parallel track of development and proving
ground for the construction-specific approach to parsing.

distribution unlimited.
LUJ-- J

DTIC
ELECTE
AU4l 0p

D ;
:i,,, ;, , ,; ,-,,-,,,.,-:,, ' , . , , ,.,- -,. .,,.,-.-.. ,. -.. ,-...,.. ,-, . ,.," " ."'

V*U;ITV C.ASsIflCAI@ boP THIS IRAQI[i(Ut' Data metwoo

REPW DMUNTAION AGEREAD UISTRUCTIOtIS
A EPORT DOCUMENTATION PAGE BEOR MPLTGFORM

8 83 08 6 6 7 GOV ACESION NO. RECIPIENT'S CATALOG NUMBER

VM9 tw ambvm . TYPE Of REPORT a PERIOD COVERED

FI CBLE PARSIG FINAL, 1 JUL 81-30 JUN 82
6. PERFORMING QRG. REPORT NUMBER

S. CONTRACT'OR GRANT NUMSErn-()

Philip J. Hayes F49620-79-C-0143

6. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Computer Science Department
Carnegie-Nellon University PE61102F; 2304/A2
Pittsburgh PA 15213

ti. CONTROLLING dPPICE NAME AND ADDRESS 12. REPORT DATE
Mathematical & Information Sciences Directorate 22 October 1982
Air Force Office of Sciontific Research Is. NUMOER Or PAGES

Bolling AFB DC 20332 14
ii. MONITORING AGENCY NAMIE & ADORES(III.irnt M1 C0111#6tl Offce) IIS SECURITY CLASS. (of this roport)

UNCLASSIFIED
ISO. DECLASSIF CATION/DOWN GRADINGSCM EDULE

IS. DSTINUTION STATEMENT (of thAwa repr)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of th. obstot .pt.,.d In Block 20, If different bor Report)

IS SUPPLEMENTARY NOTES

I*. KEY WORDS (C€tien im envaw. .AM I nseN W m f f, by elk nhmmber)
Applied natural language; flexible parsing; bottom-up parsing; friendly
interfaces; construction-speoific parsing; multi-strategy parsing.

O AMIRACT (€.,, na , .or bl...gd. ,.***p l Uf A ., , Al :A mber);]

Wen people use language spontaneously, the, often do not adhere strictly to
commonly accepted standards of grammaticalitf. The primary objective of this
proJect is to develop flexible computer pars..n techniques which can deal with
the various kinds of ungro ticalities that arise, both on the lexical and
the phrase level.

The progress towards this goal covered by this report includes:
(1) The completion of the development and the evaluation of (CONTINUED)

n ~, ic n ni n

00 UnUNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (th.e Date Enteoto

- - , l ,y ,. ,, g. ,p:. ,:. ,. ;..r-. . .,:-. ,. .. /*.. .-.-..........' ,.*... ,...,: .,, .. ,,.,,

, SCLASSIFIRD
"-" sCumTv CLAWIICATION OF THIS PAOI(Wha- bae ,..

ITEM #20, CONTINUED: CASPAR and DYPAR, two experimental parsers based on the
oanstruction-speciic approach to parsing, this approach having been formulated
thr~igh experience with FlexP, a flexible parser developed earlier under this
contract.

(2) Further development of the construction-specific approach to parsing
through the design and construction of MULTIPAR. Like CASPAR and DYPAR,
NULTIPAR is based on construction-specific parsing techniques, but aims for much
greater linuistic coverage, serving as a vehicle to test whether the
construction-specitic approach scales up In a more realistic parser.- In particu-
lar, this work involved development of additional construction-specific parsing
strategies and of a control structure through which a large number of such
strategies could be coordinated on the parsing of a single input.

(3) Additional application of the construction-specific approach to flexible
parsing to the parsing of an artificial command language in the parser for the
COUSIN command interface, a graceful interface for the Unix operating system
being developed largely under other funding. This effort represents a parallel
track of development and proving ground for the construction-specific approach
to parsing.

Accession For
NTIS iRA&I
DTIC TAB 0
Unannounced 0
Justif icatio-

Availability Codes

Avail and/or
Dist Special

UNCLASSIFIED

SIECURITY CLASSIFICATION OF THIS PAGE(Wh06 DaM Ent0*d)

1
4

1. Research Objectives

1. When people use language spontaneously, they often do not adhere strictly to commonly
accepted standards of grammaticality. The primary objective of this project Is to develop
flexible computer parsing techniques which can deal with the various kinds of
ungrammaticalities that arise, both on the lexical and the phrase level. The kinds of
ungrammaticality we wish to deal with include at the lexical level:

SmisSpelt words

" novel words whose role can be inferred from context

" erroneous segmentation between words (arising from the omission of spaces, or
the inclusion of spurious spaces or punctuation)

" lexical items which are entered in one form and then changed to another

and at the phrase level:

w input which is broken off and then restarted

* interjected words and phrases

Somitted or substituted words and phrases

e fragmentary or otherwise elliptical Input

* agreement failure

* Idloms

2. The dsn pae for parsers Is very large. We aim to develop a set' of design choices
which will result in parsers well suited to our primary goal. The design choices we are
currently using are listed below.

" bottom-up rather than top-down parsing, except in certain situations in which top-
down prediction is highly constraining

" use of several different parsing strategies, each tailored to a particular type of
construction, and selected between on a dynamic basis

" provision for the suspension and later resumption of a partial parse at a non-
adjacentpart of the input string

& We intend to develop flexible parsing techniques in the context of interfaces to interactive
computer systens. We are working with two types of interface language:

a. inmted.domatn naural languages, i.e. languages with the syntax of (possibly a
msub of) natural language, but whose semantics are limited to those of the
Intractive rssem being interfed to. AIR ,OUCn 071 C2i OW, sozm yIC UIAfR ACs

'NOTI CEOF IRAIImItTAL 70 DI'IC
This %eohniol report has bonm re'v I wv, r ni 1:-,
approved for puublio relesse lAW An' 19--12.

. Distribution is unlimited.

C;,ef, Technical Inforweoiou Division

2

b. mbre restrictive artificial languages of the sort currently found in computer
interfaces

Later, we intend to investigate how easily the techniques developed for these kinds of
languages can be transferred to more general natural language.

4. We intend to Investigate formalims for specifying domain-dependent grammars In a
convenient way for both of the types of language mentioned above.

2. Status of the Research Effort

2.1. Overview

The work covered by this contract from Its start in 1979 has involved several distinct phases:

The Initial development of the FlexP flexible parser for restricted domain natural
languages, and Its evaluation In a gracefully Interacting Interface to an electronic mall
system, covering a period from the start of the contract in July 1970 to early 1981.

e Review of the initial design choices for FlexP in the light of this evaluation, leading to the
formulation of the construction.speciflc approach to parsing, and Its preliminary
evaluation for applied natural language processing through the experimental parme
CASPAR and DYPAR. This covered the period from early 1981 to the end of the year.

* . Further deveopnt o the onstuctlionspecflc approach to parsing through the design
'Wd construction of MULTIPAR. Like CASPAR and DYPAR, MULTIPAR is based on
conetactlon-speciflc parsing techniques, but alms for much greater lnguistic coverage.
The development of MULTIPAR started at the beginning of 1962 and is still continuing.

* Addljona applicadon of the ott pclfl approach to flexible parsing to the
parsing of an arlta command language in the parser for the CousiN command
interface, a graceful interface for the Unix operating system being developed largely
under other funding. This effort started in mid.1981, and represents a parallel tack of
development of the construction-apecific iea mentioned above.

The initild design and development of FlexP and the lessons learned from it leading to the

formulaMon of the construction-speclfc approach to parsing have been descrbed In the two previous

nua reports and so will not be described further here. Even greater detail is contained in the

following publicatons: (2,3, 1, 4, 5. This report covers only the period July 1, 1981 to June 30, 1962

and will therefore confine itself to the following topics:

9 The completion of the development and the evaluation of CASPAR and DYPAR.

9 The deign and continuing development of MULTIPAR.

* The design and develpment of the flexible parser for the COUSIN user-friendty interface.

3

Separate secions on each of these topics follow.

2.2. Final Development and Evaluation of CASPAR and DYPAR

The final development of both CASPAR and DYPAR was completed In a way faithful to their initial

designs which were described in last year's annual report and In greater detail in [2,3, 1,4, 5]. To

avoid repetition, this report will confine itself to the evaluations and conclusions that were obtained

from our experience with these two simple parsers after first reviewing their motivation and design

CASPAR and DYPAR arose out of our evaluation of FlexP which showed that uniform parsing

strategies and grammar representations had significant disadvantages for the parsing of

ungrammatical input. Because Arsing using several different construction-specific strategies was a

novel approach, we decided to try out the Ideas In two simplified parsers, CASPAR and DYPAR,.

Instead of trying to Implement a full-scale pair Immediately. CASPAR was designed to show the

sultability of construction-specific techniques for ungrammatical input, while DYPAR served as a

vehicle to Investigate the control problems of coordinating several distinct parsing strategies.

The conclusions obtained from our experience with CASPAR and DYPAR can be summarized as

9 The parsing strategy used by CASPAR was tailored directly to Imperative case frames.
This strategy proved highly successful In dealing with ungrammatical Input, much more
maweiful than the uniform strategy employed by FlexP. This result encouraged .us to
believe that the degree of incisiveness afforded by construction-specific techniques
would provide similar advantages across a wide range of constructions.

*Besides performing wall on ungrammatical input, CASPAR's construction-specdfic
stragy also In many cases performed more efficiently than the uniform strategy
employed by FlexP because of a decrease In the amount of searching necessary. This
suggested that a simiar gain In efficiency could be obtained through similar techniques
for other construction types.

* In the case of both CASPAR and DYPAR,.the coordination of the various construction-
specific straleglis was Implemented through the code of the parsers themselves. This
would have made it very difficult to add new strategies to the ones already there. A more
fleible method-for the coordination of multiple strategies Is clearly necessary to pursue
the concept of multi-strategy construction-specific parsing, since any parser of that type
with a wide linguistic coverage wouldin practice have to build up to a full range of
Strategies incremental y. Only with very small parsers like CASPAR and DYPAR Is it
p to think of all the required strategies in advance and to preprogram their

Inbr% %e

- ... T- .. '- . .- o - . -. .- . . -

4

* As we hdve shown elsewhere [4, ambiguities that cannot be resolved by a flexible parser
should be resolved in a user-friendly system through a tightly focused interaction with the
person who provided the input. Focused interaction requires localized representation of
ambiguity, and our experience with CASPAR suggests that this is easier to achieve using
a construction-specfic rather than a uniform approach. In CASPAR, we analyzed each
construction type for the possible types of ambiguity it can give rise to, devised
representations for these ambiguity types, and constructed the parsing techniques so
that they could recognize each relevant type of ambiguity and generate the appropriate
representation. Such localized ambiguity representations would have been impossible to
construct with the uniform approach of FlexP.

* To be widely applicable, limited-domain parsers must provide a convenient way to define
languages In the class that they recognize. The construction-specific approach offers,
the advantage that its specialized parsing techniques can operate directly from such
domadn-oriented language definitions without the need for a time-consuming compilation
phase as was necessary with the uniform approach of FHexP. This reasoning rests on the
assumption that the most convenient way to express the language from the application
point of view is sufficiently close to the "natural" constructions of the language that
direct Interpretation is possible. Our experience with CASPAR suggests that this
assumption is valid.

These conclusions listed here have served as guiding principles In the development of the

MULTIPAR parser and of the parser for the CousN user-friendly Interface as described In the

following sectons

2.3. MULTIPAR

Given the largely positive experience with CASPAR and DYPAR, we embarked around the

beginning of 192 on the design and Implementation of a new parser that we cal MULTIPAR, based

on the same constructlon-ipeclf ideas as CASPAR and DYPAR, but Incorporating many more

construction types. We viewed MULTIPAR as a vehicle for testing whether the construction-specific

approach scaled up from the simple pilot parsers already constructed to a parser with adequate

coverage for a realistic natural language Interface.

DYPAR and CASPAR used two and three different parsing strategies respectively, coordination

boween thess strategies was simple and was "hard-wired" directly Into ihe control structure of the

pwrs Oeeelvu. The much larger number of strategies needed to provide adequate linguistic

CNo rage mnd the need to make the addition of new strategies easy precluded this "hard-wired"

kpproach for MULTIPAR. The two principal initial objectives in the development of MULTIPAR

thavlo ebecuns
a The develMom of construction-specific strategies for a number of additional

construction tp

i ,-

" -" " , . r , . . -., ,. .,,.... . '.".."."" - " " " "-'.-

* A contrdl structure which allowed multiple strategies to interact together without their
coordination being "hard-wired" into MULTIPAR.

We will describe progress on each of these points separately.

2.3.1. Additional construction-specific techniques

In CASPAR and DYPAR we concentrated on two -main kinds of construction: imperative case

frames and linear patterns. Clearly, these types fall far short of covering all the constructions

common In restricted domain natural languages, so to develop MULTIPAR, it was necessary to

identify and devise specific parsing techniques for those constructions commonly found In such

languages, but not covered by our existing parsers. Such constructions Include: noun groups (with

determiners, adjectives, classiflers, and post-nominal cases), declarative and Interrogative case

frames On addition to the imperative ones we already handle), wh-questions, relative clause modifiers,

conjunction at the noun group and clause level (general use of conjunction may not be necessary in a

restricted domain language), and comparatives. We have compiled these construction types as a

minimal set necessary for. basically habitable restricted-domain natural languages. Other

constuctions may have to be incded ler.

:, For each of these construction types, the following steps are necessary.

- analyze the structure 'of the construction, paying particular attention to highly resticted,
or otherwise easy to Identify components;

d devise parsing techniques which take advanlage of the structure to parse correct
version of the consruction correctly and efficieniy

Sexlen 1hse technkies to recover robustly and efficintly from situations In which the
constrction Is used Incorroctly or ungrammatically wherever such recovery is possible.

In keeping with the contructon-speclflc approach, all this work should be oriented to extracting the

mairnm possible leverage from haMtii specific to the Individual construction types.

By the end of the contract period that Is the subject of this report, we had completed these steps for

sme, but not all of the construction types listed above. The construction types covered during that

perod Include noun groups (with determiners, adjectives, and classifiers), declarative and

c co franm, and wh-questions.

. - - .- . - -- - - ca --

: ,. j :: -. -- - .. , - * .--.: ..,, , , ,, '. .T*
'

. -- ' 'T , . - -. ' -", " . - . -" -" -. ". ". -. -

$.6

2.3.2. Contr6l structure

As noted above, CASPAR and DYPAR used two and three different parsing strategies respectively.

Furthermore, coordination between these strategies was simple and was "hard-wired" directly into

the control structure of the parsers themselves. The much larger number of strategies needed to

provide adequate linguistic coverage and the need to make the addition of new strategies easy

precluded this "hard-wired" approach for MULTIPAR. Instead, we required a control structure which

allows. large numbers of strategies to cooperate on and share Information about the parsing of a given

input Based on these considerations and our previous experience with flexible parsing, we

established-the following goals for the control structure of MULTIPAR:

* Integration of a large number of highly specific and specialized parsing strategies. There
may well be several strategies applicable In any given situation.

9 Ability to parse bottom-up from the best information available. It is never possible to rely
absolutely on any specific piece br feature of a construction being correct.

e As much top-down control as possible. While bottom-up parsing is necessary to form an
Initial hypothesis about what the structure of an input may be, it is inefficient once that
hypothesi has been formed.

* Clean separation between domain semantics and parsing strategies. This is most
Important because of our intention to apply MULTIPAR to i significant number of

* different domains.

The.oowing design for MULTIPAR covers the first three of these goals and neither addresses nor

contradicts the fourth. The control structure of MULTIPAR Involves the following three kinds of

* tasks: A task represents the goal of recognizing as much as possible of a given
subsequence of the input as a certain kind of grammatically specified object (e.g. a task
might be to recognize as much as possible between the second and seventh words of "is
the price of a display terminal more than a hardcopy terminal" as a (comparable-object>,
where (comparable-oblect> was a grammatical subcategory; remember we are working
with restricted-domain language, and therefore, semantic type grammars). Such tasks
may specify that the recognition is to be left or right anchored if the whole subsequence
cannot be parsed as the desired object. MULTIPAR is driven at the top-level by a task to
recognize the whole of an Input ine as a grammatical super-category, which Includes all
complete sentences as'wel as individual objects, and anything else the system being
interfaced to is prepared to Interpret in isolation. In cases where elliptical replies are
expected, the top-level task might be to.recognize an object of the type expected.

* strategies: A strategy Is a method for recognizing a given grammatical constituent
There may be several strategies applicable to any given grammatical category, and a
given strategy may apply to more than one type of constituent. Strategies are Indexed by
gralmmatical categry. Each strategy has a simple initial test based on pattern matching

.9 i.- ~ -

e 7

to check applicability to a specific task (i.e. recognizing a given constituent in a given
context with possible left or right anchoring), plus a more complicated procedural test of
applicability to be applied if the pattern match succeeds. Each strategy has an Indication
of the amount of grammatical deviation it is designed to cope with, which will correspond
roughly to the amount of effort needed to apply it. Strategies may also be limited to left or
right anchored recognition.

* hypotheses: An hypothesis is the result of applying a specific strategy to a specific task
and constitutes the result of the parsing attempt, thus specified. Hypotheses are
recorded globally in a blackboard-like structure. Both successful and unsuccessful
attempts are thus recorded, and constitute a way of sharing effort between different
strategies. The successful ones are analogous to (partial) parse tree.

These three types of structure work together as follows:

1. The top-level task Is set up as described above.

2. Given a task, all strategies whoie indexing Identifies them as suitable for that task are
Identified, and grouped according to degree of grammatical deviation handled.

3. The strategies are applied in order of ascending ungrammaticality until one succeeds. All
strategies for a given level of ungrammaticality are applied (conceptually) in parallel.

4. Application of a strategy means first checking for a precomputed result In the global
blackboard of hypotheses, then applying the pattern-match test, then the procedural test,
and then If that succeeds, the body of the strategy.

5. The body of a strategy can set up new tasks, and the strategy as a whole succeeds if the
sub-tasks succeed.

S. A task succeeds if one or more of its strategies succeed.

To make the preceding description rather more concrete, we present some example strategies, and

show how they would function In a parsing some example Inputs. The linguistic examples are drawn

from the domain of a computer sales assistant. A very simple MULTIPAR strategy is:

StrategyName: comparative-sentence

Recognizes <complete-sentence)

Pttrn: [<be> $X <comparative> $YJ

Body: set up subtasks of recognizing Input segments represented by X and Y as
<comparable-objects.

Most of the-work In this strategy Is done by the simple patter-matching rule which Is Its Initial test. To

so how It might operte consider the Input

, . I- ,V . "- ".-. .,•.-.. •.-...... ". °•. "..... ,, . %.. -

9 9. 8

ls.the pribe of a display terminal more than $100

The strategy would be applicable, and would isolate "the price of a display terminal" as X and "$100"

as Y. The two subtasks of parsing X and Y as <comparable-object s would then be established, with

the first being parsed by a strategy which recognized constructions of the "<attribute> of <object>"

type, and the second which recognized strings beginning with a dollar sign and followed by digits as

sums of money. The strategy would also check that the two quantities were comparable before

reborting success, trying coercion at a more flexible stage, and thus making sense of "is a display

terminal more than $100".

A more complicated strategy S

StrategyName: imperative-caseframe

Recognizes: <complete-sentence>

Pattern: [<action-word> $X] (a more flexible version would not be left anchored)

Body. Obtain the case frame of the action word. Scan the input segment represented by
X for case markers from that case frame. This divides X up into a number of
segments separated by case markers. Set up tasks to recognize objects of the
type indicated by the preceding marker for each segment, making allowance for
direct-and Indirect objects.

This second strategy Is very similar to the dominant strategy of the CASPAR parser mentioned above.

An example Input to which it would be applicable is:

replace the display terminal with a teletype

Here "replace" is the action word and "with" is a marker from Its case frame. This isolates "the

display terminal" and "a teletype" which can be parsed as objects of the appropriate type, In this

cas <component-set)s.

For an example of flexibility, suppose the case marker "with" is missing, so that the two component

phrases cannot be isolated. The strategy then sets up tasks to recognize each of the missing case

fillers In the string that It cannot split up. Since the strategies always operate to recognize as much of

the given subsequence as possible asthe requested category, but will ignore parts that they cannot

deal with,.the attempt to recognize (in left-anchored mode) a component In "the display terminal a

teletype", will recognize "the display terminal", fall to recognize "a teletype", but Isolate it, thus

leading to Its recognition on the second attempt to parse still unrecognized strings as the fillers of

unfilled case frame slots.

Of course, there is also no guarantee, given the many roles that Individual prepositions fill, that a

.9

V - case marker that is found is really a case marker for the given case frame, as in:

replace the display terminal with a teletype with a paper-tape reader

Here both "with's are found, leading to two different ways in which the input can be split up for

further parsing. The correct reading is finally preferred because it accounts for more of the input, the

strong domain constraints making it easy for the parser to refuse to accept "the display terminal with

a teletype" as a (component-set>.

Implementation of the above design did not start during the contract period that is the subject of

the present report. However, at the time of writing, implementation has begun.

2.4. Design and Development ot the Flexible Parser for the COUSIN Interface

At an early stage in the development of the multi-strategy, construction-specific approach to

parsing restricted domain natural language, it became apparent to us that a similar approach could

be used to parse artificial command languages as well. Accordingly, starting from the beginning of

the contract period that is the subject of the present report, we began to develop a flexible parser

based on this approach for the COUSIN Interface to -the Unix operating system, which we are

developing under other funding, and which uses an extended version of the standard artificial Unix

command language for Input. This effort constituted a development track for the construction-

specific approach parallel to that represented by CASPAR and DYPAR and their successor,

* MULTIPAR. The two tracks, however, are not completely independent, since several of the specific

techniques developed for CASPAR also turned out to be useful for the COUSIN parser, as the

description in the remainder of this section will show. More details of the COUSIN system and Its

parser can be found In [6].

The command language for COUSIN Is the present Unix language, minus the constructions at a

level higher than single commands, but supplemented by other language features that make it easier

for the user to specify commands. The standard Unix format for command lines is:
- - (command-name> (options) <arguments>

where (options> Is a possibly empty sequence of flags, single characters preceded by dashes, and

option markers, also single characters preceded by dashes which identify the next input token as an

optional parameter. The <arguments> are a fixed order sequence of parameters to the command that

are not Identified by any markers, although they may in some cases be optional. An example Is:
cc -w -0 -o bar too.c tum-c

which is a call to the C language compiler (cc) with options "w" (suppression of warning diagnostics)

and -0- (object code Improvement), a flagged option "o" (which writes output to the file named,

---------------------- Z

10

"bar"), and t*o arguments foo.c and fum.c, the files to be compiled. Conceptually, cc actually has

one argument, the file to be compiled, which may be filled an arbitrary number of times; this type of

argument is called a multiple argument. A command with two arguments is "cp", which copies a list

of files, its first argument, into a directory, Its second argument, as In:

cp tile 11fle2 dir

.COUSIN makes two extensions to the standard Unix language: the addition of explicit markers for

command arguments as a supplement to the present system of purely positional specification, and

the addition of full word flags and markers for options as a supplement to the present system of single

characters preceded by dashes. So the above examples'could be written for instance as:

cc -0 no-warnings foo.c fum.c output-to bar
cc onto dir from file 111e2

When whole-word markers are used, the ordering restrictions of standard Unix are relaxed. Note that

this extension makes the language similar in many ways to the kind of language.handled by CASPAR

-a command verb followed by a set of marked cases. The major differences are that some case

markers stand by themselves and have no fillers, and that the Unix positional syntax is still included In

the language. This similarity is exploited by some of the flexible parsing techniques described below.

The multi-strategy construction-specific parsing algorithm that we have so far developed for this

language is as follows:

1. Command Identification: In much the same way as CASPAR finds the verb of its
sentence, the COUSIN parser determines which command is being Invoked, and locates
the syntax description - positional and case information - for the command.

2. Standard Unix parting: Using this syntax information the remaining part of the
command line is parsed as though it conformed to the standard Unix syntax for that
command, taking only Unix style options and positionally specified arguments Into
account. If this step is successful, parsing Is complete, and no attempt is made to use the
case style syntax. This ensures that correct Unix commands which happen by
coincidence to use case marker keywords will be recognized correctly..

3. Extended Unix parsing: If the standard parse is unsuccessful In any way, the next step
is to parse the line according to.the extended syntax. The procedure here is the CASPAR
case marker scanning algorithm, modified only to deal with case markers with no
corresponding case fillers; i.e., a scan Is made for any argument marker keywords, or any
option keywords, and the arguments and options thus flagged are extracted.

4. Flexible Unix parsing: Otherwise, If any of the input string Is still not accounted for
after this step, a more flexible algorithm is applied. This algorithm Is designed to deal
with situations in which the user has:

" used a mixture of marker and positional notation

11

* misspelt input tokens, either arguments or markers

e used positional notation in the standard Unix style, but has got the arguments out
of order

o omitted one or more required arguments

9 used standard dash notation with single character flags and markers for options,
but has omitted the dash or put the option string other than at the beginning of the
input.

Two basic techniques are involved in this flexible style of parsing: scanning for misapelt
markers and options, and comparing permutations of the arguments against the input
tokens. The first of these is a CASPAR style marker scan, with the possible targets for
correct spellings restricted to be markers of the arguments not yet filled. The second
technique is specific to the positional style of construction allowed by Unix, and Is kept
combinatodally tractable by the fact that no Unix command has more than three
arguments.

An example will illustrate how this algorithm operates. Suppose, for instance that the user typem

cp onto dir form 1112 fie3

when he really intended to type:

cp onto dir from file2 file3

Assume that "dir" Is a valid directory name, file2", "file3" are valid file names, but "onto", "form',

and "from" are not valid files or directories, The command cp has two a guments, SOURCE and

DESTINATION. SOURCE is a multiple argument of readable files. DESTINATION is an ordinay

argument of either a writable directory, or a creatable file (which may or may not already exist). There

*;F is an additional resticon that if DESTINATION is a file, SOURCE may cofntain only one file. The

default order is SOURCE DESTINATION.

Standard Unix syntax does not work, so extended Unix syntax is tried. The marker scan comes up

with "onto", and "dir" is recognized as a proper DESTINATION, and there are just three remaining

arguments which could be amigned to SOURCE, but "form" and "fi2" have failed matches with

SOURCE, so extended Unix syntax does not work, and flexible parsing must be tried. Note that If
"form" and "fil2" were suitable files for SOURCE, there would have been no need to employ the extra

flexilifty. The first flexible step is to scan for misspelt markers from left to right. Extended Unix

syntax has already accounted for "onto" and "dir", so the scan starts from "form", which is of course

corrected to "from". Since "from" is the marker for SOURCE, "112" Is required to fill the SOURCE

argument, and since "file3" satisfies the restrictions for SOURCE, and since SOURCE is a multiple

argument, "ile3" -also is taken into the SOURCE argument. Since "Ml12" is required to go Into

SOUI:ICE the fact that it fails the restrictions on the argument trigger an immediate attempt to spelling

_ i... ,. -~~~~~~................. ,...... .-... ,.. .. ,.....:.?:.....:....... :.-."

.12

correct It. This attempt succeeds, and the parse is correct and complete, without it being necessary

to invoke the second permutation phase of flexibility.-j

The Implementation of the flexible parsing algorithm described in this section was completed

during the contract period covered by this report, and incorporated into the COUSIN user-friendly

Interface. The algorithm has proved efficient in the recognition of grammatical input, and robust in its

handliuig of ungrammatical input. In addition, its construction-specific character has made it easy to

produce the localized representations of ambiguity in Its output which are so important for graceful

interaction with the user to resolve the ambiguity (see [4D.

3. Publications
The last of the publications listed below discusses the COUSIN interface project within which the

work on flexible parsing for artificial cdmmand languages was conducted.

1. Carbonell, J. G. and Hayes, P. J. Dynamic Strategy Selection in Flexible Parsing. Proc. of 19th
Annual Meeting of the Assoc. for Comput. Ling., Stanford University, June, 1981, pp. 143.147.

2. Hayes, P. J. and Mouradian, G. V. "Flexible Parsing." American Journal of Computational
UnguIstioe 7,4 (1981), 232-241.

3. Hayes, P. J. and Carbonell, J. G. Multi-Strategy Parsing and its Role in Robust Man-Machine
Communication. Camegle-Mellon University Computer Science Department, May, 1981.

4. Hayes P. J. A Construction Specific Approach to Focused Interaction in Flexible Parsing. Proc. of
19th Annual Meeting of the Assoc. forComput. Ling., Stanford University, June, 1981, pp. 149-152.

5. Hayes, P. J. and Carbonell, J. 0. Multi-Strategy Construction-Specific Parsing for Flexible Data
Base Query and Update. Proc. Seventh Int. Jt. Conf. on Artifidal Intelligence, Univ. of British
Columbia, Vancouver, August, 1981, pp. 432-439.

6. Hayes, P. J. Cooperative Command Interaction through the COUSIN System. Proc. of the Int. Conf.
on Man/Machine Systems, University of Manchester Insiitute of Science and Technology, London,
July, 192.

4. Professional Personnel

1. Philip J. Hayes
D Sc, !977, "Some Association-Based Techniques for Lexical Disambiguation by
Machine*.

2. George V. Mouradlan
M Ph, I&

126" A6i

* 13

5. Interactioris
Ongoing consultation with Dr. Jaime Carbonell, also a faculty member in the Computer Science

Department of Carnegie-Mellon University, but not funded under this contract.

.. o

'-,~-- --.- , . :I- ,.* - ;...:-.. . ._. - .. *. * -

